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Old Answer: Manual Calculus!

• By finding clever patterns in the derivatives, they can be derived 
and computed relatively easily.
• … for fully connected feed forward networks.

• As network architectures became bigger and more sophisticated, 
there was a growing need for automated systems for computing 
the necessary derivatives.

• This lecture provides an overview of these methods, called 
automatic differentiation methods.

• Before using these to differentiate loss functions w.r.t. model 
parameters, we describe how they can be used to take the 
derivative of an arbitrary function.
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Chain Rule (Review)

𝑑𝑓 𝑔 𝑥

𝑑𝑥
=

𝑑𝑓 𝑥

𝑑𝑔 𝑥

𝑑𝑔 𝑥

𝑑𝑥

or

𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥
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Chain Rule

𝑥

𝑦

𝑧

𝑑𝑧

𝑑𝑥
 – How does changing 𝑥 change 𝑧?

𝑑𝑦

𝑑𝑥
 – How does changing 𝑥 change 𝑦?

𝑑𝑧

𝑑𝑦
 – How does changing y change 𝑧?

𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥

=2 (adding 𝜖 to 𝑥 increases 𝑦 by 2𝜖)

2

=3 (adding 𝜖 to 𝑦 increases 𝑧 by 3𝜖)

3

=? (adding 𝜖 to 𝑥 increases 𝑧 by ? 𝜖)
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Chain Rule

𝑥

𝑦

𝑧

𝑑𝑧

𝑑𝑥
 – How does changing 𝑥 change 𝑧?

𝑑𝑦

𝑑𝑥
 – How does changing 𝑥 change 𝑦?

𝑑𝑧

𝑑𝑦
 – How does changing y change 𝑧?

𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥

=2 (adding 𝜖 to 𝑥 increases 𝑦 by 2𝜖)

2

=3 (adding 𝜖 to 𝑦 increases 𝑧 by 3𝜖)

3

=6 (adding 𝜖 to 𝑥 increases 𝑧 by 6𝜖)

6
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Chain Rule

𝑥

𝑦

𝑧

𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥
+

𝑑𝑧

𝑑𝑦′

𝑑𝑦′

𝑑𝑥

𝑦′

2
3

?

1 5
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Chain Rule

𝑥

𝑦

𝑧

𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥
+

𝑑𝑧

𝑑𝑦′

𝑑𝑦′

𝑑𝑥

𝑦′

2
3

𝟐 × 𝟑 + 𝟏 × 𝟓 = 𝟏𝟏

1 5
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Expression Trees

• Math expressions like function definitions can be converted into 
expression trees.
• Each internal node is a math operator.
• Each leaf node is a constant or variable.

• Example: 𝑓 𝑥 = 3𝑥2 + 2𝑥

𝑥

⋅2

×

23

+

×

𝑓(𝑥)
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𝑓 𝑥 = 3𝑥2 + 2𝑥

• Each math operator (internal node) 
can be viewed as a function.

• We can view this expression as the 
composition of many functions:
• 𝑓1 𝑥 = 𝑥2

• 𝑓2 𝑥, 𝑦 = 𝑥𝑦

• 𝑓3 𝑥, 𝑦 = 𝑥 + 𝑦

• 𝑓 𝑥 = 𝑓3 𝑓2 3, 𝑓1 𝑥 , 𝑓2 2, 𝑥

• We can apply the chain rule to 
break the derivative, 𝑑𝑓 𝑥

𝑑𝑥
, into 

many smaller problems! 𝑥

⋅2

×

23

+

×

𝑓(𝑥)
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We write 𝑥′ and 𝑥′′ so that we can talk about the two paths, 𝑑𝑓 𝑥

𝑑𝑥′  and 𝑑𝑓 𝑥

𝑑𝑥′′  

Automatic Differentiation

• Goal: Compute 𝑑𝑓(𝑥)

𝑑𝑥
, for some value of 

𝑥
• Example: 𝑥 = 5

• Step 1: Run a “forwards pass”
• Evaluate the expression tree, computing 

values from the bottom to the top.
• Step 2: Run a “backwards pass”

• Loop over nodes from the top to the 
bottom.

• For each node, compute the derivative of 
𝑓(𝑥) with respect to each input of the node.

𝑥

⋅2

×

23

+

×

𝑓(𝑥)

5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

𝑑𝑓 𝑥

𝑑𝑐

𝑑𝑓 𝑥

𝑑𝑎

𝑑𝑓 𝑥

𝑑𝑏

𝑥′

𝑥′′
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Backwards Pass: Multiplication Node

• We want to compute 𝜕𝑓(𝑥)/𝜕in1 and 𝜕𝑓(𝑥)/𝜕in2

• Assume that we know:
• The value of the inputs: in1 and in2

• These were computed during the forwards pass
• The derivative of 𝑓(𝑥) with respect to (w.r.t.) the output out 

of the multiplication function, ×.
• This is 𝑑𝑓 𝑥

𝑑out
• This was computed earlier in the backwards pass by the node 

“above” the multiplication node.

×

in1 in2

𝑓(𝑥)

𝑥

out

𝑑𝑓 𝑥

𝑑out
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Backwards Pass: Multiplication Node

• We want to compute 𝜕𝑓(𝑥)/𝜕in1 and 𝜕𝑓(𝑥)/𝜕in2

• Assume that we know:
• The value of the inputs: in1 and in2

• These were computed during the forwards pass
• The derivative of 𝑓(𝑥) with respect to (w.r.t.) the output out 

of the multiplication function, ×.
• This is 𝑑𝑓 𝑥

𝑑out
• This was computed earlier in the backwards pass by the node 

“above” the multiplication node.

•
𝑑𝑓 𝑥

𝑑in1
=

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in1
= ?

×

in1 in2

𝑓(𝑥)

𝑥

out

𝑑𝑓 𝑥

𝑑out
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Backwards Pass: Multiplication Node

• We want to compute 𝜕𝑓(𝑥)/𝜕in1 and 𝜕𝑓(𝑥)/𝜕in2

• Assume that we know:
• The value of the inputs: in1 and in2

• These were computed during the forwards pass
• The derivative of 𝑓(𝑥) with respect to (w.r.t.) the output out 

of the multiplication function, ×.
• This is 𝑑𝑓 𝑥

𝑑out
• This was computed earlier in the backwards pass by the node 

“above” the multiplication node.

•
𝑑𝑓 𝑥

𝑑in1
=

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in1
=

•
𝑑𝑓 𝑥

𝑑in2
=

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in2
= ?

×

in1 in2

𝑓(𝑥)

𝑥

out

𝑑𝑓 𝑥

𝑑out

𝑑𝑓 𝑥

𝑑out
in2

𝑑𝑓 𝑥

𝑑out
in2
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Backwards Pass: Multiplication Node

• We want to compute 𝜕𝑓(𝑥)/𝜕in1 and 𝜕𝑓(𝑥)/𝜕in2

• Assume that we know:
• The value of the inputs: in1 and in2

• These were computed during the forwards pass
• The derivative of 𝑓(𝑥) with respect to (w.r.t.) the output out 

of the multiplication function, ×.
• This is 𝑑𝑓 𝑥

𝑑out
• This was computed earlier in the backwards pass by the node 

“above” the multiplication node.

•
𝑑𝑓 𝑥

𝑑in1
=

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in1
=

•
𝑑𝑓 𝑥

𝑑in2
=

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in2
=

𝑑𝑓 𝑥

𝑑out
in1

×

in1 in2

𝑓(𝑥)

𝑥

out

𝑑𝑓 𝑥

𝑑out

𝑑𝑓 𝑥

𝑑out
in2

𝑑𝑓 𝑥

𝑑out
in2

𝑑𝑓 𝑥

𝑑out
in1
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Backwards Pass

• For each math operator (+, −,×,
𝑎

𝑏
,⋅2, …) used by a parametric 

model, derive the expression for the derivative of 𝑓(𝑥) with 
respect to each input of the operator, assuming:
• The values of all inputs to the operator are known

• They will be computed during the forwards pass.
• The derivative of 𝑓(𝑥) w.r.t. the output of the operator is known

• It will already have been computed in the backwards pass.
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Backwards Pass: Addition Node

• We want to compute 𝜕𝑓(𝑥)/𝜕in1 and 𝜕𝑓(𝑥)/𝜕in2

• Assume that we know:
• The value of the inputs: in1 and in2

• These were computed during the forwards pass
• The derivative of 𝑓(𝑥) w.r.t. the output out of the addition 

function, +.
• This is 𝑑𝑓 𝑥

𝑑out
• This was computed earlier in the backwards pass by the node 

“above” the multiplication node.

•
𝑑𝑓 𝑥

𝑑in1
=

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in1

+

in1 in2

𝑓(𝑥)

𝑥

out

𝑑𝑓 𝑥

𝑑out

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in1
= 1=

𝑑𝑓 𝑥

𝑑out
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Backwards Pass: Addition Node

• We want to compute 𝜕𝑓(𝑥)/𝜕in1 and 𝜕𝑓(𝑥)/𝜕in2

• Assume that we know:
• The value of the inputs: in1 and in2

• These were computed during the forwards pass
• The derivative of 𝑓(𝑥) w.r.t. the output out of the addition 

function, +.
• This is 𝑑𝑓 𝑥

𝑑out
• This was computed earlier in the backwards pass by the node 

“above” the multiplication node.

•
𝑑𝑓 𝑥

𝑑in1
=

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in1

•
𝑑𝑓 𝑥

𝑑in2
=

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in2
=

𝑑𝑓 𝑥

𝑑out

+

in1 in2

𝑓(𝑥)

𝑥

out

𝑑𝑓 𝑥

𝑑out

𝑑𝑓 𝑥

𝑑out

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in1
= 1=

𝑑𝑓 𝑥

𝑑out
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Backwards Pass: Exponent Node

• We want to compute 𝜕𝑓(𝑥)/𝜕in.
• Assume 𝑧 is a constant.
• Assume that we know:

• The value of the input in from the forwards pass
•  The derivative of 𝑓(𝑥) w.r.t. the output out of the 

exponentiation function, ⋅ 𝑧.
• This is 𝑑𝑓 𝑥

𝑑out
, as was computed previously in the backwards pass

•
𝑑𝑓 𝑥

𝑑in
=

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in

⋅𝑧

in

𝑓(𝑥)

𝑥

out

𝑑𝑓 𝑥

𝑑out

z𝑑𝑓 𝑥

𝑑out
in𝑧−1

=
𝑑𝑓 𝑥

𝑑out
× 𝑧 × in𝑧−1 
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𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑥′

𝑥′′
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𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass
Backwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑑𝑓 𝑥

𝑑𝑐
= ?

𝑥′

𝑥′′
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𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass
Backwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑑𝑓 𝑥

𝑑𝑐
= 1

𝑑𝑓 𝑥

𝑑𝑎
= ?

𝑥′

𝑥′′
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𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass
Backwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑑𝑓 𝑥

𝑑𝑐
= 1

𝑑𝑓 𝑥

𝑑𝑎
= 1

𝑑𝑓 𝑥

𝑑𝑏
= ?

𝑥′

𝑥′′
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𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass
Backwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑑𝑓 𝑥

𝑑𝑐
= 1

𝑑𝑓 𝑥

𝑑𝑎
= 1

𝑑𝑓 𝑥

𝑑𝑏
= 3

𝑥′

𝑥′′

𝑑𝑓 𝑥

𝑑𝑥′
= ?
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𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass
Backwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑑𝑓 𝑥

𝑑𝑐
= 1

𝑑𝑓 𝑥

𝑑𝑎
= 1

𝑑𝑓 𝑥

𝑑𝑏
= 3

𝑥′

𝑥′′

𝑑𝑓 𝑥

𝑑𝑥′
= 3 × 2 × 5 = 30 

𝑑𝑓 𝑥

𝑑𝑥′′
=?
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𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass
Backwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑑𝑓 𝑥

𝑑𝑐
= 1

𝑑𝑓 𝑥

𝑑𝑎
= 1

𝑑𝑓 𝑥

𝑑𝑏
= 3

𝑥′

𝑥′′

𝑑𝑓 𝑥

𝑑𝑥′
= 3 × 2 × 5 = 30 

𝑑𝑓 𝑥

𝑑𝑥′′
= 2

𝑑𝑓 𝑥

𝑑𝑥
= ?
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𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass
Backwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑑𝑓 𝑥

𝑑𝑐
= 1

𝑑𝑓 𝑥

𝑑𝑎
= 1

𝑑𝑓 𝑥

𝑑𝑏
= 3

𝑥′

𝑥′′

𝑑𝑓 𝑥

𝑑𝑥′
= 3 × 2 × 5 = 30 

𝑑𝑓 𝑥

𝑑𝑥′′
= 2

𝑑𝑓 𝑥

𝑑𝑥
= 30 + 2 = 32
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Automatic Differentiation

• Automatic differentiation tools take functions as input
• Typically these functions are implemented as code, e.g., python functions.

• They can then be used to take the derivative of the function with respect to 
the arguments (inputs).

• There are several methods for automatic differentiation, with different pros 
and cons.
• Forwards Mode Automatic Differentiation: Runs one forwards pass (no backwards 

pass!). Computes the derivative of the output w.r.t. a single scalar input.
• Reverse Mode Automatic Differentiation: The strategy we have described.

• Requires a forward and backwards pass.
• Can compute the derivative with respect to all inputs with one forwards+backwards pass.
•  This is most common for automatically differentiating ML models and loss functions.

• Others include symbolic differentiation (manipulating the mathematical expressions to 
calculate expressions for the derivative) and finite difference methods (beyond the 
scope of this course).
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The remainder of this presentation covers:
19 Automatic Differentiation for Functions.ipynb
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Python Autograd

• Autograd is a tool for differentiating functions defined by Python 
code.

• Autograd provides the function grad, which uses reverse mode 
automatic differentiation.

• Installation:

• Import:

30



Autograd

• Weight vectors are usually represented as ndarray objects from 
numpy.

• Autograd provides a wrapper for numpy that enables automatic 
differentiation with numpy objects.
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Autograd Basic Usage

• Define a function that you would like to differentiate:

• Call the grad function to get a new function that returns the 
gradient (derivative)

• Evaluate the f_prime function to get the derivative for a value of 𝑥

32



Autograd (Multiple Inputs)
• The second argument of grad specifies the input to take the 

derivative with respect to (default = 0)
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Autograd (Multiple Inputs)
• The second argument or grad specifies the input to take the 

derivative with respect to (default = 0)
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Autograd (Multiple Inputs)
• The second argument or grad specifies the input to take the 

derivative with respect to (default = 0)

35



Autograd (Multiple Inputs)
• The second argument or grad specifies the input to take the 

derivative with respect to (default = 0)
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Autograd (Vector Inputs)

• Autograd can take the derivative with respect to a vector of inputs.

37



End
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