
COMPSCI 389
Introduction to Machine Learning

Automatic Differentiation
Prof. Philip S. Thomas (pthomas@cs.umass.edu)

1

2

Old Answer: Manual Calculus!

• By finding clever patterns in the derivatives, they can be derived
and computed relatively easily.
• … for fully connected feed forward networks.

• As network architectures became bigger and more sophisticated,
there was a growing need for automated systems for computing
the necessary derivatives.

• This lecture provides an overview of these methods, called
automatic differentiation methods.

• Before using these to differentiate loss functions w.r.t. model
parameters, we describe how they can be used to take the
derivative of an arbitrary function.

3

Chain Rule (Review)

𝑑𝑓 𝑔 𝑥

𝑑𝑥
=

𝑑𝑓 𝑥

𝑑𝑔 𝑥

𝑑𝑔 𝑥

𝑑𝑥

or

𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥
4

Chain Rule

𝑥

𝑦

𝑧

𝑑𝑧

𝑑𝑥
 – How does changing 𝑥 change 𝑧?

𝑑𝑦

𝑑𝑥
 – How does changing 𝑥 change 𝑦?

𝑑𝑧

𝑑𝑦
 – How does changing y change 𝑧?

𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥

=2 (adding 𝜖 to 𝑥 increases 𝑦 by 2𝜖)

2

=3 (adding 𝜖 to 𝑦 increases 𝑧 by 3𝜖)

3

=? (adding 𝜖 to 𝑥 increases 𝑧 by ? 𝜖)

5

Chain Rule

𝑥

𝑦

𝑧

𝑑𝑧

𝑑𝑥
 – How does changing 𝑥 change 𝑧?

𝑑𝑦

𝑑𝑥
 – How does changing 𝑥 change 𝑦?

𝑑𝑧

𝑑𝑦
 – How does changing y change 𝑧?

𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥

=2 (adding 𝜖 to 𝑥 increases 𝑦 by 2𝜖)

2

=3 (adding 𝜖 to 𝑦 increases 𝑧 by 3𝜖)

3

=6 (adding 𝜖 to 𝑥 increases 𝑧 by 6𝜖)

6

6

Chain Rule

𝑥

𝑦

𝑧

𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥
+

𝑑𝑧

𝑑𝑦′

𝑑𝑦′

𝑑𝑥

𝑦′

2
3

?

1 5

7

Chain Rule

𝑥

𝑦

𝑧

𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥
+

𝑑𝑧

𝑑𝑦′

𝑑𝑦′

𝑑𝑥

𝑦′

2
3

𝟐 × 𝟑 + 𝟏 × 𝟓 = 𝟏𝟏

1 5

8

Expression Trees

• Math expressions like function definitions can be converted into
expression trees.
• Each internal node is a math operator.
• Each leaf node is a constant or variable.

• Example: 𝑓 𝑥 = 3𝑥2 + 2𝑥

𝑥

⋅2

×

23

+

×

𝑓(𝑥)

9

𝑓 𝑥 = 3𝑥2 + 2𝑥

• Each math operator (internal node)
can be viewed as a function.

• We can view this expression as the
composition of many functions:
• 𝑓1 𝑥 = 𝑥2

• 𝑓2 𝑥, 𝑦 = 𝑥𝑦

• 𝑓3 𝑥, 𝑦 = 𝑥 + 𝑦

• 𝑓 𝑥 = 𝑓3 𝑓2 3, 𝑓1 𝑥 , 𝑓2 2, 𝑥

• We can apply the chain rule to
break the derivative, 𝑑𝑓 𝑥

𝑑𝑥
, into

many smaller problems! 𝑥

⋅2

×

23

+

×

𝑓(𝑥)

10

We write 𝑥′ and 𝑥′′ so that we can talk about the two paths, 𝑑𝑓 𝑥

𝑑𝑥′ and 𝑑𝑓 𝑥

𝑑𝑥′′

Automatic Differentiation

• Goal: Compute 𝑑𝑓(𝑥)

𝑑𝑥
, for some value of

𝑥
• Example: 𝑥 = 5

• Step 1: Run a “forwards pass”
• Evaluate the expression tree, computing

values from the bottom to the top.
• Step 2: Run a “backwards pass”

• Loop over nodes from the top to the
bottom.

• For each node, compute the derivative of
𝑓(𝑥) with respect to each input of the node.

𝑥

⋅2

×

23

+

×

𝑓(𝑥)

5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

𝑑𝑓 𝑥

𝑑𝑐

𝑑𝑓 𝑥

𝑑𝑎

𝑑𝑓 𝑥

𝑑𝑏

𝑥′

𝑥′′

11

Backwards Pass: Multiplication Node

• We want to compute 𝜕𝑓(𝑥)/𝜕in1 and 𝜕𝑓(𝑥)/𝜕in2

• Assume that we know:
• The value of the inputs: in1 and in2

• These were computed during the forwards pass
• The derivative of 𝑓(𝑥) with respect to (w.r.t.) the output out

of the multiplication function, ×.
• This is 𝑑𝑓 𝑥

𝑑out
• This was computed earlier in the backwards pass by the node

“above” the multiplication node.

×

in1 in2

𝑓(𝑥)

𝑥

out

𝑑𝑓 𝑥

𝑑out

12

Backwards Pass: Multiplication Node

• We want to compute 𝜕𝑓(𝑥)/𝜕in1 and 𝜕𝑓(𝑥)/𝜕in2

• Assume that we know:
• The value of the inputs: in1 and in2

• These were computed during the forwards pass
• The derivative of 𝑓(𝑥) with respect to (w.r.t.) the output out

of the multiplication function, ×.
• This is 𝑑𝑓 𝑥

𝑑out
• This was computed earlier in the backwards pass by the node

“above” the multiplication node.

•
𝑑𝑓 𝑥

𝑑in1
=

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in1
= ?

×

in1 in2

𝑓(𝑥)

𝑥

out

𝑑𝑓 𝑥

𝑑out

13

Backwards Pass: Multiplication Node

• We want to compute 𝜕𝑓(𝑥)/𝜕in1 and 𝜕𝑓(𝑥)/𝜕in2

• Assume that we know:
• The value of the inputs: in1 and in2

• These were computed during the forwards pass
• The derivative of 𝑓(𝑥) with respect to (w.r.t.) the output out

of the multiplication function, ×.
• This is 𝑑𝑓 𝑥

𝑑out
• This was computed earlier in the backwards pass by the node

“above” the multiplication node.

•
𝑑𝑓 𝑥

𝑑in1
=

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in1
=

•
𝑑𝑓 𝑥

𝑑in2
=

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in2
= ?

×

in1 in2

𝑓(𝑥)

𝑥

out

𝑑𝑓 𝑥

𝑑out

𝑑𝑓 𝑥

𝑑out
in2

𝑑𝑓 𝑥

𝑑out
in2

14

Backwards Pass: Multiplication Node

• We want to compute 𝜕𝑓(𝑥)/𝜕in1 and 𝜕𝑓(𝑥)/𝜕in2

• Assume that we know:
• The value of the inputs: in1 and in2

• These were computed during the forwards pass
• The derivative of 𝑓(𝑥) with respect to (w.r.t.) the output out

of the multiplication function, ×.
• This is 𝑑𝑓 𝑥

𝑑out
• This was computed earlier in the backwards pass by the node

“above” the multiplication node.

•
𝑑𝑓 𝑥

𝑑in1
=

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in1
=

•
𝑑𝑓 𝑥

𝑑in2
=

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in2
=

𝑑𝑓 𝑥

𝑑out
in1

×

in1 in2

𝑓(𝑥)

𝑥

out

𝑑𝑓 𝑥

𝑑out

𝑑𝑓 𝑥

𝑑out
in2

𝑑𝑓 𝑥

𝑑out
in2

𝑑𝑓 𝑥

𝑑out
in1

15

Backwards Pass

• For each math operator (+, −,×,
𝑎

𝑏
,⋅2, …) used by a parametric

model, derive the expression for the derivative of 𝑓(𝑥) with
respect to each input of the operator, assuming:
• The values of all inputs to the operator are known

• They will be computed during the forwards pass.
• The derivative of 𝑓(𝑥) w.r.t. the output of the operator is known

• It will already have been computed in the backwards pass.

16

Backwards Pass: Addition Node

• We want to compute 𝜕𝑓(𝑥)/𝜕in1 and 𝜕𝑓(𝑥)/𝜕in2

• Assume that we know:
• The value of the inputs: in1 and in2

• These were computed during the forwards pass
• The derivative of 𝑓(𝑥) w.r.t. the output out of the addition

function, +.
• This is 𝑑𝑓 𝑥

𝑑out
• This was computed earlier in the backwards pass by the node

“above” the multiplication node.

•
𝑑𝑓 𝑥

𝑑in1
=

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in1

+

in1 in2

𝑓(𝑥)

𝑥

out

𝑑𝑓 𝑥

𝑑out

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in1
= 1=

𝑑𝑓 𝑥

𝑑out

17

Backwards Pass: Addition Node

• We want to compute 𝜕𝑓(𝑥)/𝜕in1 and 𝜕𝑓(𝑥)/𝜕in2

• Assume that we know:
• The value of the inputs: in1 and in2

• These were computed during the forwards pass
• The derivative of 𝑓(𝑥) w.r.t. the output out of the addition

function, +.
• This is 𝑑𝑓 𝑥

𝑑out
• This was computed earlier in the backwards pass by the node

“above” the multiplication node.

•
𝑑𝑓 𝑥

𝑑in1
=

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in1

•
𝑑𝑓 𝑥

𝑑in2
=

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in2
=

𝑑𝑓 𝑥

𝑑out

+

in1 in2

𝑓(𝑥)

𝑥

out

𝑑𝑓 𝑥

𝑑out

𝑑𝑓 𝑥

𝑑out

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in1
= 1=

𝑑𝑓 𝑥

𝑑out

18

Backwards Pass: Exponent Node

• We want to compute 𝜕𝑓(𝑥)/𝜕in.
• Assume 𝑧 is a constant.
• Assume that we know:

• The value of the input in from the forwards pass
• The derivative of 𝑓(𝑥) w.r.t. the output out of the

exponentiation function, ⋅ 𝑧.
• This is 𝑑𝑓 𝑥

𝑑out
, as was computed previously in the backwards pass

•
𝑑𝑓 𝑥

𝑑in
=

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in

⋅𝑧

in

𝑓(𝑥)

𝑥

out

𝑑𝑓 𝑥

𝑑out

z𝑑𝑓 𝑥

𝑑out
in𝑧−1

=
𝑑𝑓 𝑥

𝑑out
× 𝑧 × in𝑧−1

19

𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑥′

𝑥′′

20

𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass
Backwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑑𝑓 𝑥

𝑑𝑐
= ?

𝑥′

𝑥′′

21

𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass
Backwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑑𝑓 𝑥

𝑑𝑐
= 1

𝑑𝑓 𝑥

𝑑𝑎
= ?

𝑥′

𝑥′′

22

𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass
Backwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑑𝑓 𝑥

𝑑𝑐
= 1

𝑑𝑓 𝑥

𝑑𝑎
= 1

𝑑𝑓 𝑥

𝑑𝑏
= ?

𝑥′

𝑥′′

23

𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass
Backwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑑𝑓 𝑥

𝑑𝑐
= 1

𝑑𝑓 𝑥

𝑑𝑎
= 1

𝑑𝑓 𝑥

𝑑𝑏
= 3

𝑥′

𝑥′′

𝑑𝑓 𝑥

𝑑𝑥′
= ?

24

𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass
Backwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑑𝑓 𝑥

𝑑𝑐
= 1

𝑑𝑓 𝑥

𝑑𝑎
= 1

𝑑𝑓 𝑥

𝑑𝑏
= 3

𝑥′

𝑥′′

𝑑𝑓 𝑥

𝑑𝑥′
= 3 × 2 × 5 = 30

𝑑𝑓 𝑥

𝑑𝑥′′
=?

25

𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass
Backwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑑𝑓 𝑥

𝑑𝑐
= 1

𝑑𝑓 𝑥

𝑑𝑎
= 1

𝑑𝑓 𝑥

𝑑𝑏
= 3

𝑥′

𝑥′′

𝑑𝑓 𝑥

𝑑𝑥′
= 3 × 2 × 5 = 30

𝑑𝑓 𝑥

𝑑𝑥′′
= 2

𝑑𝑓 𝑥

𝑑𝑥
= ?

26

𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass
Backwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑑𝑓 𝑥

𝑑𝑐
= 1

𝑑𝑓 𝑥

𝑑𝑎
= 1

𝑑𝑓 𝑥

𝑑𝑏
= 3

𝑥′

𝑥′′

𝑑𝑓 𝑥

𝑑𝑥′
= 3 × 2 × 5 = 30

𝑑𝑓 𝑥

𝑑𝑥′′
= 2

𝑑𝑓 𝑥

𝑑𝑥
= 30 + 2 = 32

27

Automatic Differentiation

• Automatic differentiation tools take functions as input
• Typically these functions are implemented as code, e.g., python functions.

• They can then be used to take the derivative of the function with respect to
the arguments (inputs).

• There are several methods for automatic differentiation, with different pros
and cons.
• Forwards Mode Automatic Differentiation: Runs one forwards pass (no backwards

pass!). Computes the derivative of the output w.r.t. a single scalar input.
• Reverse Mode Automatic Differentiation: The strategy we have described.

• Requires a forward and backwards pass.
• Can compute the derivative with respect to all inputs with one forwards+backwards pass.
• This is most common for automatically differentiating ML models and loss functions.

• Others include symbolic differentiation (manipulating the mathematical expressions to
calculate expressions for the derivative) and finite difference methods (beyond the
scope of this course).

28

The remainder of this presentation covers:
19 Automatic Differentiation for Functions.ipynb

29

Python Autograd

• Autograd is a tool for differentiating functions defined by Python
code.

• Autograd provides the function grad, which uses reverse mode
automatic differentiation.

• Installation:

• Import:

30

Autograd

• Weight vectors are usually represented as ndarray objects from
numpy.

• Autograd provides a wrapper for numpy that enables automatic
differentiation with numpy objects.

31

Autograd Basic Usage

• Define a function that you would like to differentiate:

• Call the grad function to get a new function that returns the
gradient (derivative)

• Evaluate the f_prime function to get the derivative for a value of 𝑥

32

Autograd (Multiple Inputs)
• The second argument of grad specifies the input to take the

derivative with respect to (default = 0)

33

Autograd (Multiple Inputs)
• The second argument or grad specifies the input to take the

derivative with respect to (default = 0)

34

Autograd (Multiple Inputs)
• The second argument or grad specifies the input to take the

derivative with respect to (default = 0)

35

Autograd (Multiple Inputs)
• The second argument or grad specifies the input to take the

derivative with respect to (default = 0)

36

Autograd (Vector Inputs)

• Autograd can take the derivative with respect to a vector of inputs.

37

End

38

	Slide 1: COMPSCI 389 Introduction to Machine Learning
	Slide 2
	Slide 3: Old Answer: Manual Calculus!
	Slide 4: Chain Rule (Review)
	Slide 5: Chain Rule
	Slide 6: Chain Rule
	Slide 7: Chain Rule
	Slide 8: Chain Rule
	Slide 9: Expression Trees
	Slide 10: f of x , equals 3 x squared plus 2 x
	Slide 11: Automatic Differentiation
	Slide 12: Backwards Pass: Multiplication Node
	Slide 13: Backwards Pass: Multiplication Node
	Slide 14: Backwards Pass: Multiplication Node
	Slide 15: Backwards Pass: Multiplication Node
	Slide 16: Backwards Pass
	Slide 17: Backwards Pass: Addition Node
	Slide 18: Backwards Pass: Addition Node
	Slide 19: Backwards Pass: Exponent Node
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Automatic Differentiation
	Slide 29: The remainder of this presentation covers: 19 Automatic Differentiation for Functions.ipynb
	Slide 30: Python Autograd
	Slide 31: Autograd
	Slide 32: Autograd Basic Usage
	Slide 33: Autograd (Multiple Inputs)
	Slide 34: Autograd (Multiple Inputs)
	Slide 35: Autograd (Multiple Inputs)
	Slide 36: Autograd (Multiple Inputs)
	Slide 37: Autograd (Vector Inputs)
	Slide 38: End

