COMPSCI 389
Introduction to Machine Learning

Automatic Differentiation

Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Coming up...
Convolution Neural Network (CNN)

Input

Pooling Pooling Pooling

N

ANXIA

S
[\ N

0y,

e e __Horse
- JeEEtetetats —Zebra
- {S=mammas=a= “Dog

BN Ay
SR O
V250N \
YOS D@

/

-

SoftMax
Activation
Function

Convolution
RS_LLU Flatte

Convolution

Convglution 0
Kernel RelU RelU

< Feature Maps \ > Layer
|| | |

Feature Extraction Classification Probabilistic
Distribution

To train the model, we need the derivative of the loss\function with respect to each weight.
How can we compute the derivative with respect to this weight in the model?

Old Answer: Manual Calculus!

* By finding clever patterns in the derivatives, they can be derived
and computed relatively easily.
... for fully connected feed forward networks.

* As network architectures became bigger and more sophisticated,
there was a growing need for automated systems for computing
the necessary derivatives.

* This lecture provides an overview of these methods, called
automatic differentiation methods.

* Before using these to differentiate loss functions w.r.t. model
parameters, we describe how they can be used to take the
derivative of an arbitrary function.

Chain Rule (Review)

df(g(x)) df(x)dg(x)

dx dg(x) dx

or

dz dz dy
dx dy dx

Chain Rule

dz dz dy :
dx dy dx X

0.
*%
g
27
L]
g
1]
'
I
'
o
a
N
[
.... ““
. s
Ny =

llllllllll

dz . . :
v How does changing x change z? =? (adding € to x increases z by ? €)

%— How does changing x change y? =2 (adding € to x increases y by 2¢)

£ _How does changingy change z? =3 (adding € to y increases z by 3¢)

dy

Chain Rule

dz dz dy :
dx dy dx X

‘e
.
.
e
.
a
«
«
vy
Yy
Ty
e,
.....
...
LN

dz . . :
———How does changing x change z? =6 (adding € to x increases z by 6¢)

%— How does changing x change y? =2 (adding € to x increases y by 2¢)

£ _How does changingy change z? =3 (adding € to y increases z by 3¢)

dy

3

pEEEEEEEEEEEEEEE g,
L j
L
L 4

Chain Rule

dz dzdy dzdy'

dx:d_ya-l_dy’ dx

Chain Rule

dz dz dy_l_ dz dy’
dx dy dx dy' dx

R
.
.
.

T 2X34+1X5=11 .

.

Expression Trees

* Math expressions like function definitions can be converted into
expression trees. £

* Eachinternal node is a math operator. ‘
e Each leaf node is a constant or variable.

e Example: f(x) = 3x? + 2x

n <&
» <«

f(x) = 3x?% + 2x

* Each math operator (internal node)
can be viewed as a function.

* We can view this expression as the
composition of many functions:

° fi(x) = x*
* f2(x,y) = xy

f(x)

'fg(x,y)=x+y |—>
c f&) = £ (RBAW) £22)

* We can apply the chain rule to

break the derivative, %(x), Into

many smaller problemsx!

10

Automatic Differentiation

« Goal: Compute d];ix), for some value of fx0)

X ld = 85
* Example: x = 5 df (x) J 1k \ df(x)
* Step 1: Run a “forwards pass” de
* Evaluate the expression tree, computing
values from the bottom to the top.
* Step 2: Run a “backwards pass”

* Loop over nodes from the top to the
bottom.

* For each node, compute the derivative of X
f (x) with respect to each input of the node. r 5 ”

W |

X
T

S

|l

(NS

U1

d
X

af(x) land af(x)

We write x" and x”’ so that we can talk about the two paths, o~ o

Backwards Pass: Multiplication Node F)

« We want to compute df (x)/din; and df (x)/din, 47 (x)

dout
e Assume that we know:

* The value of the inputs: in; and in, out
* These were computed during the forwards pass

* The derivative of f (x) with respect to (w.r.t.) the output out
of the multiplication function, X.

+ This is 2%
dout _ _
* This was computed earlier in the backwards pass by the node mn4 mn;

“above” the multiplication node.

12

Backwards Pass: Multiplication Node F)

« We want to compute df (x)/din; and df (x)/din, 47 (x)

dout
e Assume that we know:

* The value of the inputs: in; and in, ~— . [out
* These were computed during the forwards pass

* The derivative of f (x) with respect to (w.r.t.) the output out
of the multiplication function, X.

+ This is 2%
dout _ _
* This was computed earlier in the backwards pass by the node mn4 mn;

“above” the multiplication node.
. df(x) _ df(x)dout _ 5

din1 dout din1

Backwards Pass: Multiplication Node F)

« We want to compute df (x)/din; and df (x)/din, dc;;(jt)

* Assume that we know:
* The value of the inputs: in; and in, ~— . [out

* These were computed during the forwards pass
=G

* The derivative of f (x) with respect to (w.r.t.) the output out
of the multiplication function, X.
af (x) df (x)

* Thisis e Tout
* This was computed earlier in the backwards pass by the node
“above” the multiplication node.
,df(x) _ df(x)dout _ df(x)
ding dout din; dout °

. df(x) _ df(x)dout _ o

din, dout din,
14

in,

T . df (x) .
Backwards Pass: Multiplication Node FG) ~dout "

« We want to compute df (x)/din; and df (x)/din, dc;;(jt)

* Assume that we know:
* The value of the inputs: in; and in, ~— . [out

* These were computed during the forwards pass
=G

* The derivative of f (x) with respect to (w.r.t.) the output out
of the multiplication function, X.
af (x) df (x)

* Thisis e Jout
* This was computed earlier in the backwards pass by the node
“above” the multiplication node.
,df(x) _ df(x)dout _ df(x)
din, _ dout din; dout 2
. df(x) _ df(x)dout _ df(x) in
din, " dout din, " dout 1 *
15

in,

Backwards Pass

* For each math operator (+, —,x,%,-z, ...) used by a parametric

model, derive the expression for the derivative of f (x) with
respect to each input of the operator, assuming:
* The values of all inputs to the operator are known
* They will be computed during the forwards pass.

* The derivative of f (x) w.r.t. the output of the operator is known
* |t will already have been computed in the backwards pass.

16

Backwards Pass: Addition Node F0)

« We want to compute df (x)/din; and df (x)/din, 47 (x)

dout
e Assume that we know:

* The value of the inputs: in; and in, ~— . [out
* These were computed during the forwards pass

* The derivative of f(x) w.r.t. the output out of the addition ~Lt M
function, +.
+ Thisis 22 Y
dout dout . .
* This was computed earlier in the backwards pass by the node mny N3
“above” the multiplication node.
_df(x) _ df(x)dout _ df (x) dout

ding dout din; dout din,

17

df (x)

. —_ dout
Backwards Pass: Addition Node O
. . : df (x)
We want to compute df (x)/din; and df (x)/din, | ——
* Assume that we know:
* The value of the inputs: in; and in, ~— . [out
* These were computed during the forwards pass
* The derivative of f(x) w.r.t. the output out of the addition ~Lt M
function, +.
+ Thisis 22 Y
dout dout . .
ing in,

* This was computed earlier in the backwards pass by the node
“above” the multiplication node.

_df(x) _ df(x) dout _ df (x) dout

ding dout din; dout din,
. df(x) _ df(x)dout _ df(x)
din, " dout din, "~ dout
18

Backwards Pass: Exponent Node £

* We want to compute df (x)/0in.
e Assume z is a constant.
e Assume that we know: out

are) . z-1
* The value of the input in from the forwards pass “aout "
* The derivative of f(x) w.r.t. the output out of the
exponentiation function, (-)?.

* Thisis df(x), as was computed previously in the backwards pass in

dout

df(x) _ daf(x)dout df(x)

din dout din Jout

X z X inZ~1

df

Computea

Forwards Pass

for f(x) = 3x* + 2xatx =5

20

df

dx

Compute —=for f(x) = 3x%? + 2xatx =5

Forwards Pass
Backwards Pass

f(x)
dc _ > 4 |e
c=75 a=10
X [+ X |
|_> b =25 |_>
3 2 2

21

df

Compute —for f(x) = 3x% +2xatx =5

Forwards Pass fix)

Backwards Pass df@) _ ‘d =85 df(x) _ :
dc > 4 |e da

c=75 a=10
X [X |

i
3 2 2

22

df

Compute —for f(x) = 3x% +2xatx =5
Forwards Pass f(x)
Backwards Pass df (x) ‘d =85 df(x)
—1 =1
dC > 4 |e da
c=75 a=10
X [df(x) _ ? X
db
b =25
3 2 2

23

df

Compute —for f(x) = 3x% +2xatx =5
Forwards Pass e
Backwards Pass df (x) ‘d =85 df(x)
=1 =1
dc > 4 |e da
c=175 a=10
e) 3 o] x
db
i
3 2 2
df(X) _ xl
dX, o "

24

Compute Y for f(x) =3x%+2xatx =5

dx
Forwards Pass f)
Backwards Pass df (x) ‘d =85 df(x)
dC > 4 |e da
c=75 a=10
N L df(x) _ 5 % |«
r db
| b =25
B IE
df (x af()|_
™ =3x2x5=30|[, v et
xll

25

df
Compute ™
Forwards Pass

Backwards Pass

for f(x) = 3x% +2xatx =5

df (x)
dx'

=3%x2x5=30

dx

26

f(x)
afe) _, ‘d =85 df(x) _
dc _ > 4 |e da B
c=175 a=10
ot/ G R
db
b = 25
3 .2 2
i af ()| _
xl dx// =2
X"
X
x=5
df(x) _

1

df
Compute ™
Forwards Pass

Backwards Pass

for f(x) = 3x% +2xatx =5

df (x)
dx'

=3%x2x5=30

dx

f(x)
df (x) . ‘d =85 df(x)
dc _ > 4 |e da B
c=75 a=10
@
db
b =25
3 2 2
i af@|_,
xl dxll
xll
X
x=25
d
f(x)=30+2:32

27

1

Automatic Differentiation

* Automatic differentiation tools take functions as input
* Typically these functions are implemented as code, e.g., python functions.

* They can then be used to take the derivative of the function with respect to
the arguments (inputs).

. Thgre are several methods for automatic differentiation, with different pros
and cons.

* Forwards Mode Automatic Differentiation: Runs one forwards pass (no backwards
pass!). Computes the derivative of the output w.r.t. a single scalar input.

* Reverse Mode Automatic Differentiation: The strategy we have described.
* Requires a forward and backwards pass.
 Can compute the derivative with respect to all inputs with one forwards+backwards pass.
* Thisis most common for automatically differentiating ML models and loss functions.

* Othersinclude symbolic differentiation (manipulating the mathematical expressions to
calculate expressions for the derivative) and finite difference methods (beyond the
scope of this course).

28

The remainder of this presentation covers:
19 Automatic Differentiation for Functions.ipynb

29

Python Autograd

* Autograd is a tool for differentiating functions defined by Python
code.

* Autograd provides the function grad, which uses reverse mode
automatic differentiation.

* Installation:
pip Install autograd

* Import:

from autograd import grad

30

Autograd

* Weight vectors are usually represented as ndarray objects from
numpy.

* Autograd provides a wrapper for numpy that enables automatic
differentiation with numpy objects.

import autograd.numpy as np

31

Autograd Basic Usage

* Define a function that you would like to differentiate:

def f(x):
return 3 * (x**2) + (2 * Xx)

* Callthe grad function to get a new function that returns the
gradient (derivative)

f prime = grad(f)
* Evaluate the £ prime function to get the derivative for a value of x

display(f"The derivative is: {f_prime(5.0)}.")

'"The derivative is: 32.0.° 32

Autograd (Multiple Inputs)

* The second argument of grad specifies the input to take the
derivative with respect to (default = 0)

def f(x, y):
return 3 * x**2 + 2 *y - 7

flz,y) =3z +2y — 7

33

Autograd (Multiple Inputs)

* The second argument or grad specifies the input to take the
derivative with respect to (default = 0)

def f(x, y):
return 3 * x**2 + 2 *y - 7

flz,y) =3z" +2y -7

partial x = grad(f, @) # Partial derivative with respect to x. This is equivalent to grad(f).
partial y = grad(f, 1) # Partial derivative with respect to y

34

Autograd (Multiple Inputs)

* The second argument or grad specifies the input to take the
derivative with respect to (default = 0)

def f(x, y): f($’y) _ 33;2 1 2y _7

return 3 * x**2 + 2 *y - 7

grad(f, ©) # Partial derivative with respect to x. This is equivalent to grad(f).
grad(f, 1) # Partial derivative with respect to y

partial x
partial y

display(f"The partial derivative w.r.t. x is: {partial x(3.0, 5.9)}.")
display(f"The partial derivative w.r.t. y is: {partial y(3.0, 5.0)}.")

35

Autograd (Multiple Inputs)

* The second argument or grad specifies the input to take the
derivative with respect to (default = 0)

def f(x, y): f($’y) _ 33;2 1 2y _7

return 3 * x**2 + 2 *y - 7

grad(f, ©) # Partial derivative with respect to x. This is equivalent to grad(f).
grad(f, 1) # Partial derivative with respect to y

partial x
partial y

display(f"The partial derivative w.r.t. x is: {partial x(3.0, 5.9)}.")
display(f"The partial derivative w.r.t. y is: {partial y(3.0, 5.0)}.")

'The partial derivative w.r.t. x is: 18.0.

'The partial derivative w.r.t. y is: 2.0. 36

Autograd (Vector Inputs)

* Autograd can take the derivative with respect to a vector of inputs.

The same function, but taking a numpy array as input
def f(inputs):

9 87 S el flz,y) =3z +2y — 7

return 3 * x**2 + 2 * y - 7

Now, the gradient function returns the gradient with respect to the entire numpy array of inputs
grad f = grad(f)

input = np.array([3.0, 5.0]) # Create the input for which we want the derivatives w.r.t.
gradient = grad_f(input) # Get the derivatives (the gradient)
display(f"The gradient at {input} is {gradient}")

'The gradient at [3. 5.] is [18. 2.]' 37

Serating

Thank you.

Degginmenic

	Slide 1: COMPSCI 389 Introduction to Machine Learning
	Slide 2
	Slide 3: Old Answer: Manual Calculus!
	Slide 4: Chain Rule (Review)
	Slide 5: Chain Rule
	Slide 6: Chain Rule
	Slide 7: Chain Rule
	Slide 8: Chain Rule
	Slide 9: Expression Trees
	Slide 10: f of x , equals 3 x squared plus 2 x
	Slide 11: Automatic Differentiation
	Slide 12: Backwards Pass: Multiplication Node
	Slide 13: Backwards Pass: Multiplication Node
	Slide 14: Backwards Pass: Multiplication Node
	Slide 15: Backwards Pass: Multiplication Node
	Slide 16: Backwards Pass
	Slide 17: Backwards Pass: Addition Node
	Slide 18: Backwards Pass: Addition Node
	Slide 19: Backwards Pass: Exponent Node
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Automatic Differentiation
	Slide 29: The remainder of this presentation covers: 19 Automatic Differentiation for Functions.ipynb
	Slide 30: Python Autograd
	Slide 31: Autograd
	Slide 32: Autograd Basic Usage
	Slide 33: Autograd (Multiple Inputs)
	Slide 34: Autograd (Multiple Inputs)
	Slide 35: Autograd (Multiple Inputs)
	Slide 36: Autograd (Multiple Inputs)
	Slide 37: Autograd (Vector Inputs)
	Slide 38: End

